
Perturbation methods for the matrix eigenproblem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 6455

(http://iopscience.iop.org/0305-4470/25/23/037)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 25 (1992) 6455-6459. Rinted in the UK 

Perturbation methods for the matrix eigenproblem 
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Abstract. Some computational experiments are reponed an the solution of the eigen- 
problem fora matrix H by using an iterative sequence oftransformations oftype H + S'HS,  
where S is trivially invertible and is usually calculated from a first-order perturbation 
formula. Simple improved methods of canstructing S are reported; these methods greatly 
improve the convergence properties of the eigenvalue calculations. 

1. Introduction 

A general principle used in approaching the matrix eigenvalue problem is that an 
N x N square matrix H and its transform S ' H S  by a non-singular S have the same 
eigenvalues. A complete diagonalization process seeks to find S such that S-'HS is 
diagonal, with S containing the eigencolumns. The present note reports some computa- 
tional experiments which used a more simple form of S. This form is obtained by 
starting from the unit N x N matrix 1 and then inserting non-zero elements in the I th  
column (if the Ith eigenvalue is desired), with the ( I ,  I) element kept equal to 1. Such 
a matrix takes the form 1 +R, where R has the property R2 = 0. It follows that S = 1+ R 
has the immediately known inverse 1 - R. Such easily-invertible transformations have 
been used in both time-dependent and time-independent wave operator theory (Jolicard 
and Biiiing 1990, i99ij. -Wen they are appiied to the traditionai eigenvaiue probiem 
for a square matrix H the most simple choice for the non-zero elements in the Ith 
column of R is (in an obvious notation) 

R ( J )  = H ( I ,  J M H U ,  I )  -w, 111 (1) 
as given by first-order perturbation theory (Grosjean and Jolicard 1987, Killingbeck 
issi). Successive evaiuaiions of S-'iiS using ( i )  ai each siage modify ihe eiements 
H ( J ,  K )  until H finally attains a form with H ( I ,  I) equal to the eigenvalue E ( I )  and 
all the other elements H ( J ,  I) equal to zero. Grosjean and Jolicard (1987) applied the 
procedure to the matrix H of the Hamiltonian -D*+x2+Ax4 set up in a basis of even 
parity eigenfunctions of -D2+x2 .  As A increases this unperturbed basis becomes more 
and more unsuitable; the increasing relative magnitude of the off-diagonal matrix 

prescription (1). Even at A=0.2 Grosjean and Jolicard (1987) found that the process 
diverges slowly for the ground state (I = 1).  Our recent computations showed that in 
such borderline cases the eigenvalue can still be estimated fairly accurately from a 
Pad6 approximant analysis of the ultimately divergent sequence of H ( I ,  I) values; 
however, the sum of the moduli of the elements H(J ,  I) at first decreases as required 
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but then reaches a non-zero minimum and begins to increase again. We report here 
some simple methods which markedly improve the convergence properties of the 
process. We note that Kalamboukis (1980) made an analysis of a somewhat similar 
perturbation prescription which arises in Davidson’s method for the matrix eigen- 
problem. 

J P Killingbeck and G Jolicard 

2. Methods of order N 

We call a method of order N one which uses some explicit rule giving each R ( N )  
directly, as does (1); more complicated implicit rules, such as the Gauss-Seidel ( G S )  
one (discussed later) require an amount of computation of order N2 to produce 
the column R ( J )  for each transformation. The two most simple ways to 
modify the perturbation formula (l),  while still only using the matrix elements H ( I ,  I) 
and the diagonal elements, are as follows. 

Method 1.  Use (l), but multiply the computed R ( J )  by a fixed reduction factor p. 
This simple reduction factor method (RFM) improves the convergence considerably. 
At p = 1 convergence for I = 1 was not obtained at A =0.2; with p =f  the process 
converges for I = 1,2 ,3  even at A = 1, as shown by test calculations on the 20 x 20 form 
of H. 

Method 2. This method was designed by analogy with the Jacobi transformation 
method, but uses only one column and will work for non-symmetric H; indeed even 
if H is initially symmetric the S transformations necessarily render it non-symmetric. 
This method, to which we have given the name the single-cycle method (SCM), proceeds 
by using (1) in cyclic fashion. For the case I = 1, for example, a sequence of small 
transformations is applied, in each of which only one R ( J )  is chosen according to (l) ,  
with the other R ( J )  set equal to zero. A complete cycle ( J  = 2 , 3 , .  . . , N )  of such small 
transformations involves roughly the same total computational effort as one full 
transformation in which all elements are calculated simultaneously using (1). The 
subtle new feature which enters is that each small single-element transformation 
modifies some of the matrix elements involved in the transformation for the next 
element. This collective effect dramatically improves convergence; even at A = 2 (ten 
times the I = 1 limit for the original perturbative formula) the SCM converges at I = 1,2 
and 3 for a S O X  50 version of the test matrix H. Table 1 shows some illustrative results 
for A = 0.3 and I = 1 while table 2 shows some specimen SCM results. 

3. The Cau&idel approach 

Before making each S transformation the first-order column estimate (1) can be 
improved by changing it to a second-order column, using some formalism such as 
Brillouin-Wigner (BW) perturbation theory. The desired exact elements R ( J )  at each 
transformation will obey the equation 
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Table 1. The H ( I , I )  sequence for the 20x20 version of H at A=O.3. I = I .  NI is the 
iteration number and both RFM and SCM results are shown. 

NI B = l  B =0.7 SCM 

2 1.172 008 131 1.170417312 1.163 564807 
4 1.167 160 166 1.165398998 1.163 975214 

8 1.165 577253 1.164 I62 477 1.164 045 989 
IO 1.165 464 158 1.164088019 1.164046982 
12 1.165 514277 1.164063241 1.164047 I26 
I4 1.165 702 893 1.164054 121 1.164047151 
16 1.166050331 1.164 050 434 1.164047156 
18 1.166 614 693 1.164048808 1.164047 157 
20 1.167 502973 1.164048034 1.164047 I57 

6 !:I65 97723fi !,!644!2 503 !l!6403n328 

where the H(J ,  K )  are the current elements in the transformed H matrix; use of these 
exact elements would finish the calculation in one step. In practice only an approximate 
set of R ( J )  can be calculated, so that several iterations will be required. The equations 
(2) can he used in several ways in approximate calculations, and two different uses 
seem to be confused in the terminology used by Arias de Saavedra and Buendia (1991). 
In their work, of course, H is fixed throughout, so that the R ( J )  in (2) are interpreted 
directly as eigencolumn elements; this does not affect the general principles involved. 
Two principal modes of use of (2) are as follows. 

The BW mode. R ( I )  is set equal to 1, with all other R ( J )  zero. The quantities on the 
right of (2) are all worked out for the current R ( J )  (using some trial E value) and are 
held in a temporary array T ( J )  before being finally copied back into the R ( J )  array. 
Applying this process M times gives the provisional Brillouin-Wigner eigencolumn. 
To fix the value of E this column is substituted in the eigenvalue equation 

and the whole process is iterated to self-consistency (for a fixed order M). 

7he GS mode. In this mode equations (2) and (3) are applied repetitively in an attempt 
to obtain convergence; the vital difference from the BW mode is that the R ( J )  are nor 
initialized again to the value zero or unity at the start of each cycle. This direct process 

dimensional perturbed oscillator problem treated in a hybrid manner by Arias de 

Table 1. Converged H ( I ,  I )  values for the 60x 60 version of H. The results agree with the 
eigenvalues given by the hypervirial perturbation method (Killingbeck 1991). 

nr+,lnll., 1.~s.4 dTnr t i r rmlxr  h r r  F r m n n A m v  e! a! (!ogs) fer the s z m ~  kjlr& of pqG- 
W P I  U'LU'.'., .."I.' W""....."., Y J  L 1.........-1 

r - ,  1 -, I - ,  
1 - 1  

r _ ,  A , - a  

0.5 1.241 854060 7.396900639 15.136 845 75 
1.0 1.392351 642 8.655 049 958 18.057 557 44 
1.5 1.509415693 9.591 537 272 20.193 18255 
2.0 1.607 541 302 10.358 583 38 21.927 166 19 
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Saavedra and Buendia (1991). The latter authors calculated the eigenvalue from a 
Rayleigh quotient based on what they termed a BW column, although it was actually 
found by using (2) in GS mode. The work of Femandez et al (1985) indicates that the 
GS mode is often adequate to give the eigenvalue on its own without any subsidiary 
calculations. 

The difference between the BW and GS modes can be described and illustrated clearly 
for our test matrix. If the BW calculation for the state I = 1 is taken to third order, it 
will produce non-zero values for the R ( J )  up to J = 7, together with an approximate 
eigenvalue. However, if the os mode is used, including coefficients up to R ( 7 ) ,  the 
result is the lowest eigenvalue in the subspace spanned by the seven bias states. Table 
3 shows quite clearly the difference between the rates of convergence of the two 
approaches as the order M increases. The BW approach only uses information about 
selected combinations of the matrix elements, whereas the os approach freely uses all 
of the matrix elements within the coupled subspace activated at a particular order M. 

Table 3. Comparison of Brillouin-Wigner and Gauss-Seidel eigenvalues for increasing 
perturbation order M, with I = 1 and A =O.l. 

M BW GS 

0 1.075 1.075 
1 1.064473 680 1.065 375 667 
2 1.065 636 975 1.065 285 701 
3 1.065 187287 1.065 285 510 
4 1.065 329 191 1.065 285 510 

12 1.065 285 946 1.065285 510 
13 1.065 285 204 1.065 285 510 

In the above BW and os calculations the matrix H was held fixed throughout. We 
have also performed some computations in which one or more cycles of the GS iteration 
are performed to produce the R ( J )  for each S transformations. The two methods then 
operate in a symbiotic manner; the GS iteration gives an R ( J )  column of reasonable 
accuracy for the S transformation, while the S transformation reduces the size of the 
elements H(J,  I), assisting in the convergence of the GS process. For example, for a 
20 x 20 version of H, with A = O S ,  50 cycles of a combined process gave the I = 3 
eigenvalue 15.136 845 76. At A = 1, 120 cycles gave the I = 3 eigenvalue 18.057 557 44. 
The Gauss-Seidel iterative approach used alone took 150 cycles for the A = 0.5 case 
and diverged for the A = 1 case. Each cycle of the combined calculation began with 
zero values for all R ( J )  except R ( I ) ,  although the column calculating according to 
(1) could be used. Two cycles of Gauss-Seidel iteration were used, followed by an S 
transformation. Even the use of the simple starting column with one Gauss-Seidel 
iteration gives better convergence properties than the use of equation (1) alone, since 
the R ( J )  with high J values are effectively of high perturbation order rather than of 
first order. Preliminary results suggest that the OS approach to calculating the R ( J )  
column is roughly as effective as the SCM at producing convergence of the S transforma- 
tion method, although the SCM is more simple for computer programming. 

Each element X ( J )  of the desired eigencolumn of the matrix His found very simply 
in the S transformation method. It is given by the sum of the R ( J )  values used in the 
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sequence of transformations which bring H to reduced form (which form, incidentally, 
provides a matrix of dimension reduced by one and with all the eigenvalues of H 
except one). The successively augmented X ( J )  values thus resemble the partial sums 
of a series, with the R ( J )  being the terms in the series. Pad6 analysis or simple Aitken 
extrapolation of the sequence of H ( I ,  I) values gives a good eigenvalue estimate before 
the H ( I ,  I) sequence has converged. The interesting possibility arises that some form 
of extrapolation process on the sequence of successive R ( J )  column elements might 
provide a method for accelerating the convergence of the S transformation method; 
this possibility is currently being investigated. The principal emphasis in the calculations 
reported here was on obtaining convergence; for our test problem a few hundred 
iterations may be necessary for I = 3 and a large A value. 
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